Classification of DNA microarrays using artificial neural networks and ABC algorithm
نویسندگان
چکیده
DNA microarray is an efficient new technology that allows to analyze, at the same time, the expression level of millions of genes. The gene expression level indicates the synthesis of different messenger ribonucleic acid (mRNA) molecule in a cell. Using this gene expression level, it is possible to diagnose diseases, identify tumors, select the best treatment to resist illness, detect mutations among other processes. In order to achieve that purpose, several computational techniques such as pattern classification approaches can be applied. The classification problem consists in identifying different classes or groups associated with a particular disease (e.g., various types of cancer, in terms of the gene expression level). However, the enormous quantity of genes and the few samples available, make difficult the processes of learning and recognition of any classification technique. Artificial neural networks (ANN) are computational models in artificial intelligence used for classifying, predicting and approximating functions. Among the most popular ones, we could mention the multilayer perceptron (MLP), the radial basis function neural network (RBF) and support vector machine (SVM). The aim of this research is to propose a methodology for classifying DNA microarray. The proposed method performs a feature selection process based on a swarm intelligence algorithm to find a subset of genes that best describe a disease. After that, different ANN are trained using the subset of genes. Finally, four different datasets were used to validate the accuracy of the proposal and test the relevance of genes to correctly classify the samples of the disease. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Classification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملUsing Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns
Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of co...
متن کاملUsing Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns
Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile 
properties of ...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 38 شماره
صفحات -
تاریخ انتشار 2016